
Процессный и системный подходы к освоению наукоемких технологий металлообработки

Говорится о результатах проведенных исследований применения процессного и системного подходов при освоении наукоемких технологий металлообработки, в частности объемного пластического деформирования. Схематично описаны указанные подходы, приведены результаты определения характеристик технологии объемного деформирования, используемых в конструкторско-технологических расчетах

В.Г. Кутяйкин

доцент, заместитель заведующего кафедрой «Стандартизация, сертификация и управление качеством», г. Нижний Новгород. kutyaykinvg@mail.ru, канд. техн. наук

Н.А. Макаров

Нижегородский филиал ФГАОУ ДПО «Академия стандартизации, метрологии и сертификации (учебная)», директор, г. Нижний Новгород, asms-nn@sandy.ru

рогрессивные технологии пластического деформирования (полугорячее выдавливание формообразующих полостей в инструментальных сталях, полугорячая объемная штамповка специальных деталей из среднеуглеродистых легированных сталей, высокопроизводительная холодная объемная штамповка на многопозиционных автоматах. сферодвижная штамповка) относятся к наукоемким технологиям [1–3].

Наукоемкие технологии позволяют получать формообразующий инструмент и машиностроительные детали с высокими эксплуатационными свойствами и минимальными допусками. Сложность реализации и недостаток исходных данных при проектировании таких технологий обусловили целесообразность применения процессного и системного подходов, изложенных в международных стандартах ИСО серии 9000 [4, 5]. В частности, в [4] установлено:

- ▶ при процессном подходе желаемый результат достигается эффективнее, если деятельностью и соответствующими ресурсами управляют как процессом;
- ▶ при системном подходе выявление, понимание и менеджмент взаимосвязанных процессов как системы содействуют повышению результативности и эффективности организации при достижении ее целей.

Разработка наукоемких технологий металлообработки, использующая ресурсы и управляемая с целью преобразования входов в выходы, может рассматриваться как процесс, основанный на цикле PDCA (Plan - Do -Check — Act). Концепция цикла PDCA (Планирование – Осуществление – Проверка — Действие) может быть распространена на любую деятельность

[5]. Преимущество процессного подхода состоит в непрерывности управления, обеспечиваемого как на стыке отдельных процессов, так и при их комбинации и взаимодействии. Процессы, включая специальные, наиболее эффективно функционируют в рамках единой системы, то есть при системном подходе. Специфика разработки новых технологий деформирования требует глубоких системных исследований и накопления данных о закономерностях изменения структурнофизических свойств металлических материалов, наиболее используемые из которых — стали. В общем виде совокупность циклов PDCA применительно к наукоемким технологиям полугорячего и холодного пластического деформирования можно представить как единую систему — подсистему в системе менеджмента качества - с разделением ее по глубине освоения (см. таблицу) на следующие уровни:

- 1. Продукция.
- 2. Технология.
- 3. Исходные данные.
- 4. Методы исследований.
- **5.** Закономерности физических про-

Согласно предложенному разделению выход последующего (более глубокого) уровня образует вход в предыдущий. Приведенная таблица дает схематичное представление о понятиях «процессный и системный подходы»: процессный — перемещения в горизонтальном направлении, системный в вертикальном направлении.

Основным показателем результативности процесса, определяющим удовлетворенность потребителя при прохождении цикла РDCA на уровне «Продукция», является полное соответствие характеристик изделия уста-

ключевые слова

процессный подход, системный подход, ИСО 9000, наукоемкие технологии, деформирование металлов, очаг деформации, характеристики технологии

Таблица Уровни системы менеджмента качества и этапы процессного подхода применительно к наукоемким технологиям пластического деформирования

Уровни СМК	Этапы процесса (циклы РDCA)			
	P	D	C	Α
1. Продукция	▶ Установление требований к изделию: требования законодательства, нормативной и технической документации, контракта и др.	• Изготовление продукции и достижение соответствия установленным требованиям	 ▶ Контроль продукции и анализ результатов освоения ▶ Оценка возможности повышения конкурентоспособности на основе потребительских свойств продукции 	• Мероприятия по повышению потребительских (эксплуатационных, экологических и др.) характеристик, технологичности и снижению себестоимости
2. Технология Конструкторско- технологические расчеты и проектирование технологии	 ▶ Необходимость совершенствования действующих либо разработки новых технологий ▶ Квалифицированное осуществление конструкторско— технологических расчетов и проектирования 	 ▶ Разработка, освоение и обеспечение стабильности технологии ▶ Оперативное и экономичное проведение инженерной подготовки производства 	 ▶ Анализ возможностей совершенствования технологии ▶ Авторский контроль со стороны разработчиков ▶ Нормоконтроль, метрологическая экспертиза, согласование и утверждение технической документации 	 ▶ Ввод документации в действующее производство ▶ Повышение производительности и других параметров технологии ▶ Стандартизация (унификация, выработка рекомендаций) способов конструкторско-технологических расчетов и методов проектирования, их автоматизация
3. Исходные данные Исследования, выявление оптимальных режимов. Определение и систематизация данных для проектирования	 ▶ Выбор и поиск данных о характеристиках материалов и технологий ▶ При необходимости планирование дополнительных исследований 	► Использование систематизированных данных о применяемых материалах и технологиях ► Дополнительные исследования	• Анализ адекватности полученных данных о свойствах материалов и параметрах технологии	► Создание и/или систематизация характеристик для более объективного описания материалов и технологий ► Определение оптимальных технологических режимов
4. Методы исследований	► Поиск (планирование при отсутствии совершенствования либо разработка) методов (методик) исследований (испытаний, измерений)	 Выбор, совершенствование либо разработка методов (методик) исследований технологий и материалов Расчет погрешностей измерений определяемых параметров 	▶ Выявление совместимости с ранее используемыми методами (методиками) и возможности унификации (конвертации) методов (методик) исследований (испытаний, измерений)	► Определение области применении в сфере государственного регулирования обязательная аттестация методов (методик) и внесение в Федеральный информационный фонд
5. Закономерности физических процессов	► Необходимость установления закономерностей изменения внутреннего строения и свойств материалов, параметров технологии	▶ Установление закономерностей изменения свойств и строения материалов применительно к разрабатываемой технологии	► Анализ выявленных закономерностей физических процессов Гоределение условий (диапазонов) их реализации	► Выявление природы физических процессов ► Формализация и при возможности математическое описание физических процессов

новленным требованиям при согласованной стоимости (выход). Вход на уровень «Продукция» служит выходом с уровня «Технология», который характеризуется в первую очередь стабильностью и достаточной производительностью. На этом уровне цикл PDCA включает в себя как непосредственно освоение производства продукции, так и проектирование технологии и инструментальной оснастки, использующиеся на входе следующего уровня «Исходные данные». Выходом с уровня «Исходные данные» должна быть достоверная и систематизированная информация в виде оптимальных режимов и набора показателей, характеризующих проектируемые технологии и обрабатываемые материалы.