Most Important World Innovations in Machine-Buildings

B.S. Voskoboynikov, Senior Research Associate, VINITI of RAN, Moscow, mach04@viniti.ru

M.I. Grechikov, Head, Department of Scientific Information on Problems of Mechanical Engineering and Transport, VINITI

of RAN, Moscow, mach@viniti.ru

Dr. V.A. Grushnikov, Senior Research Associate, VINITI of RAN, Moscow, mach04@viniti.ru

A.M. Petrina, Senior Research Associate, VINITI of RAN, Moscow

key words

mechanical engineering, structures, technologies, processes, technogenic risks, environmental protection, safety, innovations

References

Undoubtedly, the progress of human civilization has always been based on useful inno- vations and continues to be determined by breakthrough revolutionary and evolution- arily improving social, biological, technical and so on processes that occur in society and innovations. These innovations are realized in the form of constructive, technological and other measures, constantly leaping or gradually at the root of the changing quality of life of the inhabitants of the globe and are manifested in expanding the areas of ap- plication of automated production processes in all sectors of the economy without ex- ception, uniting them into unified complexes. Logistics, the processing of huge amounts of information and support the effective operation of household, communal and other public services vehicles. These production and servicing complexes, on the one hand, improve the quality of life, and on the other hand, simultaneously by their side harm- ful products negatively affect the environment, worsening the conditions of existence. As a result, risks of both local technogenic catastrophes and global climate changes in the form of irreversible warming are added to natural cataclysms and social risks.

Overcoming these risks at the present time is the most urgent and priority task, without the speedy effective solution of which it is difficult to imagine the normal continuation of civilization, we are confident.

24. Rose C. D., Coenen J. M. G. Automatic generation of a section building planning for constructing complex ships in European shipyards, International Journal of Production Research, 2016, v. 54, no. 22, pp. 6848–6859.
25. Rood P. Striking a Balance between Size and Speed, Ship and Boat International, 2016, May–June, pp. 40–41.
26. MetroRio System for Regular Transport of Urban and Interurban Passengers by River and Sea, USA Patent N 9409638.
27. The designer’s role in new tech vessels, Ship and Boat International, 2016, May-June, 7 P.
28. Sirkett A. Crew-free control, Ship and Boat International, 2016, March-Apr., pp. 26–27.
29. Combined submersible vessel and unmanned aerial vehicle, USA Patent N 9341457.
30. Stavenhagen A. Einsatz von autonomen Unterwasserfahrzeugen als anwendungsorientierte Sensorplattformen// Schiff und Hafen: International Publication for Shipping, Offshore and Marine Technology, 2016, v. 68, no. 7, pp. 30–33.
31. Method and kit for transferring pipes from a carrier vessel to an underwater-pipeline laying vessel, USA Patent N 9387998.
32. Floating Unit, USA Patent N 9409626.
33. Method and System for Protection of Vessels Against Intrusions, USA Patent N 9409639.
34. Yanuar, Ibadurrahman, Waskito K.T, Karim S., Ichsan M. Interference Resistance of Pentamaran Ship Model Qith Asymmetric Outriuuth
Configurations, J. Mar. Sci and Appl., 2017, 16, no. 1, pp. 42–47.
35. Das erste elektrische Fischerboot fischt in Norwegen, Wind Kraft Journal und Natürliche Energien, 2016, v. 36, no. 1, 4 P.
36. Electrokinetic nanothrusters and applications thereof, USA Patent N 9252688.
37. Held D. Pumps are getting more intelligent, Chemical Plants + Processing, 2015, v. 48, no. 2, pp. 11–16.
38. Koll S. Wenn die Pumpe nach Hause telefoniert, Industrie-Anzeiger, 2016, v. 138, no. 13, pp. 38–41.
39. Koll S. Grundfoss macht seine Produkte fit für vernetzte Fabrik. Mehr Intelligenz in der Pumpe, Ind.–Anz., 2017, 139, no. 2, pp. 30–31.
40. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange, USA Patent N 8919112.
41. Neue Anforderungen für KfW-Förderung: Die richtige Lüftungsanlage für die maximale Förderung, Ki Kälte Luft Klimatechnik, 2016, v. 52, no. 6–7, pp. 20–21.
42. Drosou V., Kosmopoulos P., Papadopoulos A. Solar cooling system using concentrating collectors for office buildings: A case study for Greece, Renewable Energy: An International Journal, 2016, v. 97, pp. 697–708.
43. Schallschutzoptimierter Außenwand-Luftdurchlass: Frische Luft im Wohn- und Schlafbereich, Ki Kälte Luft Klimatechnik, 2017, 53, no. 3,
pp. 24–25.
44. Für Mehrgeschosswohnbauten. Lüftung und Gebäudeshnutz, tab — Fachmedium TGA-Branche, 2017, 48, no. 4, 15 P.
45. Flexible Regelung. Schullüftungsgerät, tab — Fachmedium TGA-Branche, 2017, 48, no. 4, pp. 26–46.
46. Fröhlich P. Berührungslos auf kleinstem Raum, Maschinenmarkt, 2017, no. 5, pp. 40–43.
47. Böhm V. Raumindividuelles Wohnfülklima. 4-Leiter-System im Bürogebäude, tab — Fachmedium TGA-Branche, 2017, 48, no. 4,
pp. 48–49.