Kompetentnost' 7/148/2017

ISSN 1993-8780

INNOVATION 9

Technological Innovations of Textile Production

V.V. Grushnikova, Researcher, Russian Institute for Scientific and Technical Information Russian Academy of Sciences, Moscow, Russia, viniti@mach04.ru

key words

textile manufacture, technologies, innovations, advantages, economic efficiency

References

Entering the fourth generation industrial revolution era, humanity is increasingly looking for the ways of low-cost, energy-efficient and environmentally friendly production of all necessary for the life and functioning of industrial, housing and communal, logistics, etc. processes. Progressive growth of information on the development and implementation of new equipment and equipment modernization, patentable technical solutions confirms this. Leaders are methods and devices based on advanced methods of modern information digital technologies and artificial intelligence that allow to optimize technological processes with minimal systemic and random errors of the human factor — the result of natural cognition, fatigue, abstraction, aging, etc. reasons. I have considered progressive, expecting mass use promising innovations, using the example of textile production technologies.

1. Neumann I. Innovativ, smart, nachhaltig — Trends für die Textilindustrie 2025, Melliand Textilberichte, 2016, v. 97, no. 3, 101 P.
2. Aladpoosh R., Montazer M. Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: Investigation and optimization of attributes associated with photocatalytic activity, Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 2016, v. 141, pp. 116–125.
3. Errokh A., Ferraria A. M., Conceição D. S., Vieira Ferreira L. F., Botelho do Rego A. M., Rei Vilar M., Boufi S. Controlled growth of nanoparticles bound to cotton fibres, Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 2016, v. 141, pp. 229–237.
4. Brunner B., Schwab S.-A. Smarte, multifunktionale Textilien für Gesundheit und Arbeitsschutz, TEXTILplus, 2016, v. 4, no. 5–6, pp. 14–16.
5. Zou L., Lan C., Li X., Zhang S., Qiu Y., Ma Y. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding, Fibers and Polymers, 2015, v. 16, no. 10, pp. 2158–2164.
6. Kulpinski P., Czarnecki P., Niekraszewicz B., Jeszka J. K. Functional nanocomposite poly(phenylene sulphide) fibres — preliminary studies, Fibres and Textiles in Eastern Europe, 2016, v. 24, no. 4, pp. 20–26.
7. Misak H. E., Mall S. Cryogenic tensile strength and fatigue life of carbon nanotube multi-yarn, Journal of Nanoscience and

Nanotechnology, 2016, v. 16, no. 3, pp. 3021–3025.

8. Gu Limin, Chai Chunpeng, Luo Yunjun. Preparation and performance evaluation of phosphorus-nitrogen synergism flame-retardant water-borne coatings for cotton and polyester fabrics, Journal of Polymer Research, 2016, v. 23, no. 4, pp. 64/1–64/10.
9. Flameproof spun yarn, fabric, clothes and flameproof work clothes — USA Patent N 9091000.
10. Xue C.-H., Zhang L., Wei P., Jia S.-T. Fabrication of superhydrophobic cotton textiles with flame retardancy, Cellulose, 2016, v. 23, no. 2, pp. 1471–1480.
11. Fang F., Zhang X., Meng Y., Ding X., Bao C., Li S., Zhang H., Tian X. Boron-containing intumescent multilayer nanocoating for extinguishing flame on cotton fabric, Cellulose, 2016, v. 23, no. 3, pp. 2161–2172.
12. Scheulen K. Edelstahlgarne und Carbonfaser als textile Heizelemente im Vergleich, TEXTILplus, 2016, v. 4, no. 7–8, pp. 13–15.
13. Nafeie N., Montazer M., Nejad N. H., Harifi T. Electrical conductivity of different carbon nanotubes on wool fabric: An investigation
on the effects of different dispersing agents and pretreatments, Colloids and Surfaces: An International Journal, 2016, v. 497, pp. 81–89.
14. Huang S., Chen P., Lin W., Lyu S., Chen G., Yin X., Chen W. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes, RSC Advances: An International Journal to Further the Chemical Sciences, 2016, v. 6, no. 16, pp. 13359–13364.
15. Yeager M. P., Hoffman C. M., Xia Z., Trexler M. M. Method for the synthesis of para-aramid nanofibers, Journal of Applied Polymer

Science, 2016, v. 133, no. 42, pp. 28–35.

16. Riethmüller C. Lebende wände sorgen für saubere Luft, TEXTILplus, 2016, v. 4, no. 7–8, pp. 28–29.
17. Döpke C., Grimmelsmann N., Ehrmann A. 3D-Druck auf Gestricken, Melliand Textilberichte, 2016, v. 97, no. 4, pp. 195–196.
18. http://www.3dpulse.ru /news/odezhda-i-obuv/ministry-of-supply-predstavila-napechatannyi-na-3d-printere-besshovnyi-pidzhak.
19. New surface technology, Textilenetwork: The Magazine for the Manufacture of Textile Products, 2016, v. 14, no. 1–2, 14 P.
20. Beeinflussung des Warenfalls durch 3D-Aufdruck, TEXTILplus, 2017, v. 5, no. 1, pp. 21–23.
21. Qiao X., Wang Y. Design of self-collection information system based on textile workshop, Mian fangzhi jishu, 2016, v. 44, no. 4, pp. 6–9.
22. Seidl R. Die digitale Zukunft gestalten, TEXTILplus, 2016, v. 4, no. 3–4, 3 P.